• 
    
    <bdo id="agiee"></bdo>
  • <code id="agiee"><xmp id="agiee"></xmp></code>
    <rt id="agiee"><acronym id="agiee"></acronym></rt>
    <li id="agiee"></li>
    技術文章您現在的位置:首頁 > 技術文章 > 區域精煉 一類純化晶體的方法

    區域精煉 一類純化晶體的方法

    更新時間:2018-11-04   點擊次數:5352次

    區域熔煉

    摘自《維基百科,自由的百科全書》

    普凡(圖左)早期示眾的區域熔煉管。從圖中已有多環加熱器而非單環判斷,普凡已發展相關理論一段時間。1953年攝于貝爾實驗室

    垂直式的區域熔煉裝置,圖中的高頻交流電感應線圈正緩緩由上而下往金屬棒的另一端移動,把管中的一小段金屬熔成炙熱的熔融液。比起上圖普凡的水平式裝置,垂直式的區域熔煉裝置節省了一些實驗室空間。攝于1961年

    水平區域熔煉法概念圖,熔融區只要表面張力控制好就不用怕它因重力掉下來損傷儀器

    剛開始成長的硅晶

    區域熔煉(簡稱區熔;英語:zone melting,或譯帶域熔化)——又稱區精煉zone refining)或浮動區浮區法浮帶制程[1]FZ法floating zone process)——是一類純化晶體(如金屬和半導體)的方法。晶體上一個狹窄的區域熔融,此熔化區是沿晶體移動(在實踐中,晶體被拉動穿過加熱器)。熔化區將不純固體在固體前邊緣熔化并將更純的物質凝固在后邊留下。重復上述過程終將雜質集中于晶柱的一端,其余大部分的晶柱部分呈現成分較純的固體。區域熔煉法可以適用到幾乎所有有明顯的固相和液相之間濃度差異的平衡溶質-溶劑系統。區域熔煉法現在已是重要的半導體制程之一。

    目錄

    • 1歷史
    • 2制程細節
      • 2.1晶錠精煉純化
      • 2.2精煉的濃度數學表示
      • 2.3加熱器
      • 2.4爐壓
      • 2.5區域勻化
    • 3參見
    • 4參考文獻
    • 5參考書目

    歷史[編輯]

    目前已知早的區域熔煉法用于鉍晶體的備制,英國的X射線晶體學家約翰·戴斯蒙·伯納于1920年代末接受物理學家卡皮察的委托制備高純度的鉍,以供應卡皮察研究鉍在低溫高磁場下的電阻率[2]。區域熔煉法于1952年被貝爾實驗室的威廉·加德納·普凡重新發明[3],用于制備高純度晶體管材料,如高純度的鍺[4]。1953年美國科學家保羅·開克(Paul H. Keck,1908年6月28日-1963年4月8日)與馬塞爾·儒勒·埃都瓦·高萊以區域熔煉法制備出硅單晶。[5]后來隨著硅基半導體逐漸普及,Henry Theurer、Reimer Emeis等人承續普凡的成果將區域熔煉法推廣至浮帶硅的相關研究上。

    制程細節[編輯]

    區域熔煉法一般被認為有兩種功能。功能之一是1952年發展出來用于純化晶錠的精煉法(Zone Refining),今日區域熔煉一詞多泛指此功能。功能之二是1939年發明的區域勻化法(Zone Leveling)在幾乎相同的制程設備下,區域熔煉法也可以用來均勻加熱區域的成分分布。

    晶錠精煉純化[編輯]

    區域熔煉法可以用來純化晶錠的原理是利用大多數雜質對主成分的偏析系數k(特定種類雜質在固相中濃度對該雜質在液相中濃度的比值)通常小于1。因此,在固相/液相界面,雜質會往液相的區域擴散。如此一來,借由使晶柱緩慢地通過狹窄區域的高溫爐,只有在該狹窄區域的晶柱部分會熔融,雜質不斷進入熔融的液相區,隨著熔融區的移動,雜質后會被帶走析出在晶柱的一端。制備者可以選擇熔煉結束后把尚存雜質的部分裁切掉,并把切掉的部分再重復以同樣方法熔煉純化,以追求更高的純度。

    區域熔煉來作為精煉純化晶體的手段可以進行批式生產也可以進行連續生產,單視不同生產需要而定。然而如果要進行連續生產,設備上就不僅要費心思讓晶錠富含雜質的一端得以一直補充原料上去,精煉純化過的一端得以一直把產物收集下來,還要讓兩端補原料跟收產物的速率一致,這樣才算得上連續生產。

    由于缺乏雜質減少了異質成核的機會,制備者可以選擇在缺乏雜質的區域加入晶種進行特定方向的晶粒成長,在該區域生長出的單晶。如此精煉純化與長單晶兩樣目標都可以兼顧,而且還不用像柴式拉晶法要煩惱坩鍋帶來的污染。

    精煉的濃度數學表示[編輯]

    垂直區域熔煉示意圖

    k_: 平衡分離系數(平衡偏析系數)

    C_:平衡時界面附近固態的雜質濃度

    C_l:平衡時界面附近液態的雜質濃度

    k_: 等效分離系數(等效偏析系數)

    L: 熔區長度

    x: 熔區移動的總距離

    C_: 晶棒的初始雜質濃度,即精煉前濃度(假設該晶棒雜質分布非常均勻,重量濃度)

    A:晶棒的橫切截面積

    \rho_d:固態硅的密度

    {\displaystyle S}S: 熔化區熔融液之雜質含量

    {\displaystyle S_}S_: 熔化區剛開始在晶棒的一端形成時的熔融液中的雜質含量

    {\displaystyle C_}C_: 熔化區熔融液又凝固成固體后的雜質濃度,即精煉后濃度(也是假設該晶棒雜質分布非常均勻,重量濃度)

    先(不特別考量區域融煉的情況)考量有固相晶體與液相熔融液相接,在兩相界面達到動態平衡的狀況下,將兩相各別的雜質濃度之比值定義為平衡分離系數k_

    {\displaystyle k_={\frac }}}}

    因長期穩定的動態平衡下,大多數種類的雜質傾向留在液相熔融液而非固相晶體,所以大多數雜質對常見半導體材料主成分(硅、鍺)的平衡分離系數值都小于1。(k_<1) 再考量一固相晶體自液相熔融液中成長出來的情況,對k_<1的雜質而言,它們會不斷被排斥而留在液相熔融液中。假設雜質受排斥的速率,比它們因被攪動而移走或往固相擴散的速率遠高出許多,則界面附近將會產生濃度梯度。此時吾人得以定義等效分離系數k_為固相雜質濃度C_與液相遠離界面處雜質濃度之比值。

    {\displaystyle k_\equiv k_\equiv {\frac }}}}

    開始考慮區域熔煉的情況,當熔融區移動一小段距離d_,固體熔化成液體使熔融區增加雜質數量為{\displaystyle C_\rho _}Ad_,液體凝固成固體為熔融區減少雜質數量為k_(){\displaystyle {\frac }}})。

    {\displaystyle dS=C_\rho _A}{\displaystyle d_-{\frac Sd_}}=(C_\rho _}A{\displaystyle -{\frac S}})}d_

    {\displaystyle \int _^dx=\int _}^{\frac \rho _A}-{\frac S}}}}}

    又,熔化區初形成時,其內含雜質含量約略等同該區熔化前的固體雜質含量,所以{\displaystyle S_=C_\rho _AL},將S_代入上式,整理得

    {\displaystyle exp({\frac x}})={\frac \rho _A}-{\frac S_}}}\rho _A}-{\frac S}}}}} 或 {\displaystyle S={\frac \rho _AL}}}}{\displaystyle [1-(1-k_)^{\frac x}}]}

    被精煉后的雜質濃度可表示為{\displaystyle C_=k_({\frac {\rho _AL}})},代入上式則可整理出預測精煉后濃度的公式。

    {\displaystyle C_=C_[1-(1-k_)^{\frac x}}]}

    對各種精煉方法,理論上{\displaystyle {\frac }}}}值越小者,是越有效率的精煉方法。對多數k_<1的材料進行單一一次精煉,柴式拉晶法的{\displaystyle {\frac }}}}值都要比區域精煉法的{\displaystyle {\frac }}}}值要來得小。意味著要減少晶體材料一樣的雜質濃度,柴式拉晶法所需進行精煉的次數越少。然而,君不見今產業界以柴式拉晶法大規模純化高純度半導體原料,反而是多以區域精煉法進行。此乃因區域精煉法要重復多次進行,較為容易。[6]

    加熱器[編輯]

    區域熔煉法所使用的加熱器都有一些共通的特色,它們都可以形成短小的熔融區,并緩慢且一致地游移于晶錠兩端間。感應線圈、環繞電熱器、電子束加熱、瓦斯火焰等都是常見的加熱器。對晶錠加一外加磁場并對晶錠通一電流也是一種可行方式,通常會細微地控制加熱器產生的磁動勢減少熔融液體的流動。光學加熱器利用高功率的鹵素燈或氙燈當作熱能來源,通常只用于研究用途,尤其是制造絕緣體的時候。光學加熱器并不適合用于產業用途,因為相對于其他種類的加熱器,光學加熱器的功率還是太低了,進而限制光學加熱器能處理的晶錠大小。

    對于某些高電阻率的半導體材料而言,用傳統感應線圈直接加熱可能效果不彰。此時可以改采間接加熱法進行改善,先以感應加熱的方式加熱一鎢環,鎢環達到高溫后會再放出輻射熱,再用這些輻射熱產生熔化區。

    爐壓[編輯]

    區域熔煉為防止污染通常會在氣密爐中進行。經驗顯示,以氣密爐進行區域精煉時需注意爐內氣體壓力,因為爐壓控制是否得宜會間接影響到精煉后晶錠上差排的有無多寡。目前的理論普遍認為,爐壓若是過低,則熔融區中的熔融物會蒸發,附著淀積在氣密爐爐壁上,然后再剝落掉進熔融區,進而導致差排產生。[7]

    區域勻化[編輯]

    區域勻化的目的在于使材料固溶體的溶質分布更均勻。單晶可以因為區域勻化而使內部的摻質平均散布,彌補早期布里奇曼-史托巴格法"長單晶"跟"溶質均勻分布"魚與熊掌難以兼得的缺點[8]。例如,早期制備晶體管或二極管半導體時,會先找來一塊純化過的鍺晶錠。然后取小量的銻置于熔融加熱區域,使其通透擴散至原本只含純鍺的區域。只要能夠妥善地控制加熱速率及其他操作變因,銻摻質就可以均勻地散布在鍺晶錠中,做到參雜的效果。類似的技巧今日依然被運用在置備資通訊產品所用晶體管的過程中,只是硅晶取代了過去鍺晶的地位成為主流,而制程亦有小幅的更動。

    99久久精品费精品国产一区二区| 国内精品久久久久久麻豆| 久久精品国产精品青草app| 欧美牲交a欧美牲交aⅴ久久| 久久一区不卡中文字幕| 久久青青草原精品国产不卡| 久久久久亚洲国产| 夜夜亚洲天天久久| 粉嫩小泬无遮挡久久久久久| 久久婷婷人人澡人人爱91| 久久人妻av一区二区软件| 亚洲国产精品综合久久网络 | 久久精品国产精品青草app| 狠狠久久精品中文字幕无码| 97色伦图片7778久久| 久久天天躁夜夜躁狠狠躁2020| 久久精品国产精品亜洲毛片| 无码狠狠躁久久久久久久| 99久久国产综合精品swag| 久久精品中文字幕| 亚洲中文字幕久久精品无码喷水 | 久久婷婷五月综合97色| 久久这里只精品国产免费10| 久久久久无码精品| 国产91精品久久久久久久| 亚洲精品国产综合久久久久紧| 久久久综合九色合综国产精品| 亚洲中文字幕无码久久精品1| 一级a性色生活片久久无少妇一级婬片免费放 | 伊人不卡久久大香线蕉综合影院| 日本精品一区二区久久久| 久久精品国产亚洲AV电影网| 久久国产精品成人影院| 无码精品久久久久久人妻中字| 久久精品国产96精品亚洲| 久久久精品免费国产四虎| 手机看片福利久久| 国内精品伊人久久久久777| 国内精品人妻无码久久久影院导航| 久久精品女人天堂AV麻| 久久高潮一级毛片免费|